91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

CS 412代做、代寫Python設計程序

時間:2024-05-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 412: Spring ’24
Introduction To Data Mining
Assignment 5
(Due Monday, April 29, 23:59)
• The homework is due on Monday, April 29, 2024, at 23:59. Note that this is a hard deadline. We are
using Gradescope for all homework assignments. In case you haven’t already, make sure to join this
course on Gradescope using the code shared on Canvas. Contact the TAs if you face any technical
difficulties while submitting the assignment. Please do NOT email a copy of your solution. We will
NOT accept late submissions (without a reasonable justification).
• Please use Campuswire if you have questions about the homework. Make sure to appropriately tag your
post. Also, scroll through previous posts to make sure that your query was not answered previously.
In case you are sending us an email regarding this Assignment, start the subject with “CS 412 Spring
’24 HW5:” and include all TAs and the Instructor (Jeffrey, Xinyu, Kowshika, Sayar, Ruby).
• Please write your code entirely by yourself. All programming needs to be in Python 3.
• The homework will be graded using Gradescope. You will be able to submit your code as many times
as you want.
• The grade generated by the autograder upon submission will be your final grade for this assignment.
There are no post deadline tests.
• Do NOT add any third-party libraries in your code. Built-in Python libraries are allowed.
• For submitting on Gradescope, you would need to upload a Python file named homework5.py. A
python file named homework5.py containing starter code is available on Canvas.
• You are provided two sample test cases on Canvas, you can try debugging your code with minsup
values of 2 or 3 with the given sample inputs. On Gradescope, your code will be evaluated on these
sample test cases as well as additional test cases. You will get autograder feedback for the sample test
cases but not for the other hidden test cases.
• Late submission policy: there will be a 24-hour grace period without any grade reduction, i.e., Gradescope will accept late submissions until Tuesday, April 30, 2024, at 23:59.. Unfortunately, we will
NOT accept late submissions past the grace period (without a reasonable justification).
1
Problem Description
The focus of the programming assignment is to implement a frequent itemset mining algorithm based
on Apriori method with pruning. Given a transacion database T DB and a minimum support threshold minsup, the algorithm should simulate the Aprirori method with pruning - returning all the candidate
itemsets and the frequent itemsets at each scan of the algorithm.
We will test your code on relatively small transaction databases (maximum 15 transactions of length 10).
Please make sure the runtime of your code does not exceed 10 seconds for such small databases.
You will not get any credit if your code does not work.
Input Format: The input will be a plain text file with a transaction database, with each line corresponding
to a transaction composed of a string of letters. Each letter in a transaction corresponds to an item. For
example, the transaction database Test-1.txt is as following:
ACD
BCE
ABCE
BE
Your code will take two inputs:
1. Path to a plain text file pointing to the transaction database; and
2. An integer, the minimum support.
2
Output Format: Your code will implement a function called apriori based on Apriori algorithm with pruning. It will return a 3-level nested dictionary.
Figure 1: Simulation of Test-1.txt
Figure 1 shows the simulation of the Apriori algorithm with pruning for an example. The expected
output (3-level nested dictionary to be returned from the apriori function of your code) is shown in Figure
2.
Output dictionary structure
Let’s consider the 3 levels of the dictionary as outer, middle, and inner levels. The keys of the outer
level will denote the scans (or iterations) of the algorithm. For example, in Figure 1, the algorithm terminates after 3 scans and so in the dictionary of Figure 2, we have 3 elements in the outer dictionary, where the
keys of these 3 elements are integers 1, 2, and 3 denoting the first, second and third scans of the algorithm,
respectively. The scan numbers must start from 1 and should of integer data type.
Value of each scan no.(i.e., each key in the outer layer) is a dictionary, which are the middle layer dictionaries. In Figure 1, the algorithm generates the candidate itemsets and the frequent itemsets in each scan.
So each middle dictionary will have two elements - the key c denoting the candidate itemsets and the key f
denoting the frequent itemsets. The data type of keys c and f should be string.
Value for the keys c and f will be dictionaries - denoting the candidate itemsets and the frequent itemsets
of the corresponding scan. The keys of these dictionaries will be of string data type denoting the itemsets.
The values will be of integer data type denoting the support of the associated itemset.
3
Figure 2: Expected output for Test-1.txt
4
Notes
1. Pruning: While creating the candidate itemsets at every scan, you are supposed to apply pruning.
For example, in Figure 1, at the 2nd scan, merging AC and BC can generate the candidate ABC for
the 3rd scan, but as a subset AB of ABC is absent in the frequent set F2, ABC is pruned and not
included in the candidate set C3. Similarly, the ABC is absent in the corresponding inner dictionary
of Figure 2.
2. Sorting: The alphabets in the strings of the keys of the inner dictionaries should be alphabetically
sorted. For example, BCE should not be any of BEC, CBE, CEB, ECB, EBC.
3. Filename: The submitted file should be named homework5.py, otherwise Gradescope will generate an
error.
4. Terminating: If the frequent itemsets of a scan has only one itemset, the algorithm will terminate
and no further scan will be done. For example, in Figure 1, F3 has only one itemset BCE, so the 4th
scan was not performed.
Also, if the candidate itemsets of a scan is empty, that scan will be discarded and won’t be included in
the output. For example, let’s assume for some input, the frequent itemsets F2 obtained at 2nd scan
are AC, BC. So the candidate itemsets C3 for the 3rd scan will be empty (ABC won’t be in C3 as AB
is absent in F2 and so ABC will be pruned). In this case, the output will not include the 3rd scan as
both C3 and F3 are empty.
5. Error: If you get an error from the autograder that says the code could not be executed properly and
suggests contacting the course staff, please first check carefully if your code is running into an infinite
loop. An infinite loop is the most likely cause of this error.
What you have to submit
You need to submit a Python file named homework5.py. A starter code is posted on Canvas. Implement
the code to compute the required output. You can add as many functions in your code as you need. Your
code should be implemented in Python 3 and do NOT add any third-party packages in your code; you can
use Python’s built-in packages.
Your code must include a function named apriori which takes following two inputs:
1. Transaction database (filename in the starter code): path to a plain text file with the sequence database
as shown in the example above. Each line will have a transaction. Note that there will be an empty
line at the end of the file.
2. Minimum support (minsup in the starter code): an integer indicating the minimum support for the
frequent itemset mining.
A call to the function will be like:
apriori("hw5 sample input 1.txt", 2)
Additional Guidelines
The assignment needs you to both understand algorithms for frequent itemset mining, in particular Apriori
with pruning, as well as being able to implement the algorithm in Python. Here are some guidelines to
consider for the homework:
• Please start early. It is less likely you will be able to do a satisfactory job if you start late.
• It is a good idea to make early progress on the assignment, so you can assess how long it will take: (a)
start working on the assignment as soon as it is posted. Within the first week, you should have a sense
of the parts that will be easier and parts that will need extra effort from you; (b) Solve an example
5
(partly) by hand as a warm-up to get comfortable with the steps that you will have to code. For the
warm-up, you can use the two sample test cases provided on Canvas named hw5 sample input 1.txt and
hw5 sample input 2.txt.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp
















 

掃一掃在手機打開當前頁
  • 上一篇:COMP1117B代做、代寫Python編程設計
  • 下一篇:COMP1721代寫、代做java編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    亚洲综合不卡| 免费观看在线色综合| 亚洲一区二区综合| 日韩经典一区二区| www.久久精品| 国产一区二区三区免费不卡| 欧美日韩国产在线播放网站| 国产日韩精品一区二区三区| 午夜精品久久久久久久99樱桃| 国产91精品欧美| 亚洲一区日本| 久久久精品天堂| 视频在线观看一区二区三区| 不卡的电影网站| 久久精品国产清高在天天线| 欧美成人三级电影在线| 性感美女极品91精品| 91在线丨porny丨国产| 久久亚洲精选| 中文字幕中文字幕一区| 国产最新精品免费| 国产欧美日韩综合一区在线播放| 日韩一卡二卡三卡四卡| 亚洲高清免费在线| 欧美二区视频| 91精品国产乱码| 午夜精品aaa| 红桃视频欧美| 久久人人爽爽爽人久久久| 免费看日韩精品| 日韩视频中文| 日本一区二区免费在线| 极品少妇一区二区三区精品视频| 国产偷自视频区视频一区二区| 亚洲一区二区三区四区五区黄 | 日韩一区二区三区电影在线观看 | 国产成人午夜片在线观看高清观看| 雨宫琴音一区二区在线| 韩日成人av| 日韩欧美国产一区二区三区 | 欧美日韩亚洲丝袜制服| 亚洲一区在线免费观看| 黄色日韩精品| 久久嫩草精品久久久久| 国产成人免费在线视频| 欧美日韩在线电影| 午夜久久久久久久久| 国产精品久久久对白| 中文字幕亚洲欧美在线不卡| 99久久精品免费看国产| 日韩欧美卡一卡二| 极品美女销魂一区二区三区 | 99久久免费国产| 日韩午夜激情电影| 丁香六月久久综合狠狠色| 欧美精品一二三| 狠狠色丁香婷综合久久| 欧美日韩在线不卡| 精品一区二区三区香蕉蜜桃| 91久久精品一区二区| 日韩电影在线免费看| 色婷婷久久久综合中文字幕| 五月婷婷另类国产| 久久久福利视频| 久久国产综合精品| 欧美精品亚洲二区| 国产99久久久久久免费看农村| 欧美一级欧美三级| 国产精品一区免费视频| 日韩视频在线永久播放| 久久riav二区三区| 亚洲v中文字幕| 色女孩综合影院| 久久国产尿小便嘘嘘| 欧美剧在线免费观看网站| 精品一区二区免费在线观看| 这里只有精品99re| 国产 日韩 欧美大片| 国产三区在线成人av| 国产一区日韩一区| 亚洲色图一区二区| 久久久久一区二区| 久久99日本精品| 欧美α欧美αv大片| 欧美国产日本| 亚洲卡通动漫在线| 欧美午夜电影在线播放| 粉嫩蜜臀av国产精品网站| 久久久99精品免费观看不卡| 亚洲国产99| 日韩二区在线观看| 精品精品国产高清a毛片牛牛 | 一区二区三区毛片| 欧美色倩网站大全免费| 97久久精品人人澡人人爽| 国产精品不卡在线| 色美美综合视频| a4yy欧美一区二区三区| 亚洲欧美区自拍先锋| 色94色欧美sute亚洲线路一ni| 久久精品国产亚洲高清剧情介绍 | 亚洲三级网站| 国产一区在线观看麻豆| 欧美国产欧美亚州国产日韩mv天天看完整| 亚洲精品护士| 国产综合色精品一区二区三区| 久久欧美一区二区| 久久激情中文| 成人av在线看| 一区二区欧美在线观看| 91精品国产麻豆| 在线亚洲自拍| 国产成人精品免费| 一区二区三区久久| 久久综合狠狠综合| 色婷婷久久久亚洲一区二区三区| 不卡视频一二三| 五月婷婷久久综合| 国产日韩欧美高清| 欧美视频中文字幕| 在线观看成人一级片| 国产精品中文有码| 亚洲小少妇裸体bbw| 日韩欧美123| 久久看片网站| 欧美三级午夜理伦三级中文幕| 蜜臀av在线播放一区二区三区| 国产精品丝袜一区| 91精品国产综合久久久久| 国产精品日韩高清| 91免费国产在线| 国产自产v一区二区三区c| 国产精品成人免费在线| 91精品国产黑色紧身裤美女| 亚洲欧美日韩另类精品一区二区三区 | 国产欧美午夜| 91丝袜呻吟高潮美腿白嫩在线观看| 日本亚洲最大的色成网站www| 欧美国产精品中文字幕| 91精品欧美福利在线观看| 久久精品五月婷婷| 伊人久久婷婷色综合98网| 国产成人在线观看| 日产欧产美韩系列久久99| 亚洲精品第1页| 国产欧美一区二区三区沐欲| 欧美一区二区三区免费在线看| 久久综合激情| 99精品国产99久久久久久福利| 欧美一区网站| 99综合电影在线视频| 国产在线不卡一区| 麻豆成人久久精品二区三区红| 中文字幕亚洲不卡| 国产片一区二区| 久久这里都是精品| 日韩欧美国产一二三区| 欧美日韩国产精品成人| 色一区在线观看| 久久精品男女| 久久精品道一区二区三区| 亚洲日产国产精品| 亚洲免费高清| 国产精品xnxxcom| 97久久人人超碰| 99久久精品国产导航| 国产成人av电影免费在线观看| 国产原创一区二区| 国产一区二三区| 国产风韵犹存在线视精品| 麻豆国产精品777777在线| 亚洲成人在线| 欧美日韩一区二区视频在线 | 日韩免费成人网| 亚洲一区二区免费看| 色综合天天在线| 中文字幕在线不卡国产视频| 一本久道中文字幕精品亚洲嫩| 91浏览器在线视频| 丁香婷婷综合色啪| 韩国精品在线观看| 国产成人丝袜美腿| 国产在线视频不卡二| 国产成人精品亚洲午夜麻豆| 国产精品一区二区免费不卡| 久久狠狠亚洲综合| 丁香激情综合国产| 免费欧美高清视频| 成人一区二区三区视频在线观看 | 久久九九99视频| 精品福利一二区| 中文字幕一区av| 久久九九国产| 9191久久久久久久久久久| 欧美成人a在线| 精品国产一区二区三区忘忧草| 欧美激情资源网| 亚洲国产欧美日韩另类综合| 亚洲一区二区三区四区不卡| 蜜臀av一级做a爰片久久|