91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CS 550、代寫c++,Java編程語言

時間:2024-03-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 550 Operating Systems, Spring 2024
Programming Project 2 (PROJ2)
Out: 2/25/2024, SUN
Due date: 3/23/2024, SAT 23:59:59
There are two parts in this project: coding and Q&A. In the coding part, you will implement a
functionality that changes the outcomes of race conditions after forking in xv6, and implement an
MLFQ-like scheduler for xv6. In the Q&A part, you will need to answer the questions about xv6
process scheduling.
1 Baseline source code
You will work on the base code that needs to be cloned/downloaded from your own private GitHub
repository. Make sure you read this whole section, as well as the grading guidelines (Section 5),
before going to the following link at the end of this section.
• Go to the link at the end of this section to accept the assignment.
• Work on and commit your code to the default branch of your repository. Do not create a
new branch. Failure to do so will lead to problems with the grading script and 5 points off
of your project grade.
Assignment link: https://classroom.github.com/a/2n4W593t
(Continue to the next page.)
1
2 Process scheduling in xv6 - coding (70 points)
2.1 Race condition after fork() (20 points)
As we discussed in class, after a fork(), either the parent process or the child process can be
scheduled to run first. Some OSes schedule the parent to run first most often, while others allow
the child to run first mostly. As you will see, the xv6 OS schedules the parents to run first after
fork()s mostly. In this part, you will change this race condition to allow user programs to specify
which process should run first (i.e., be the winner) after fork() returns.
2.1.1 The test driver program and the expected outputs
The baseline code has included a test driver program fork rc test that allows you to check
the race condition after a fork(). The program is implemented in fork rc test.c. In the
program, the parent process repeatedly calls fork(). After fork(), the parent process prints
string a “parent” when it runs, and the child process prints a string “child” and exits.
The program takes one argument to specify which process should be the “winner” process after
fork() returns. Here is the usage of the program:
$ fork_rc_test
Usage: fork_rc_test 0|1
0: Parent is scheduled to run most often
1: Child is scheduled to run most often
When calling the program using ”fork rc test 0”, the parent process is the fork winner and is
scheduled to run first after fork() most often, which is the default behavior with xv6. You will
see output like the following:
$ fork_rc_test 0
Setting parent as the fork winner ...
Trial 0: parent! child!
Trial 1: parent! child!
Trial 2: parent! child!
Trial 3: pare child! nt!
Trial 4: parent! child!
Trial 5: parent! child!
...
Trial 45: child! parent!
Trial 46: parent! child!
Trial **: parent! child!
Trial 48: parent child! !
Trial 49: pare child! nt!
Note that in the above output, the parent did not always run first. But it was so for most trials.
What determines which process runs first after the fork? Think about the reason. You will answer
a related question later in the Q&A part (Section 3).
When calling the program using ”fork rc test 1”, the child process is the fork winner and is
scheduled to run first after fork() most often. With a correct implementation, the expected
output of the test driver program looks like:
2
$ fork_rc_test 1
Setting child as the fork winner ...
Trial 0: child! parent!
Trial 1: child! parent!
Trial 2: child! parent!
Trial 3: c parent! hild!
Trial 4: child! parent!
Trial 5: child! parent!
...
Trial 45: child! parent!
Trial 46: child! parent!
Trial **: child! parent!
Trial 48: child! parent!
Trial 49: child! parent!
2.1.2 What to do
(1) Figure out what to do to change the race condition to enable the feature of changing fork
winner.
(2) Implement a system call that sets the fork winner.
(3) Implement a user space wrapper function for the above system call, and declare it in “user.h”.
This wrapper function’s prototype should be
int fork_winner(int winner);
This function takes one argument:
• If the argument is 0 (i.e., fork winner(0)), the parent process is the winner and
should be scheduled first after fork() most often (this is the default behavior);
• If the argument is 1 (i.e., fork winner(1)), the child process is the winner and should
be scheduled first after fork() most often.
Note: for the proper compilation of the base code, the fork rc test program has a stub
implementation for the wrapper function above. Remember to comment it out after developing
your own solution.
Tips: understanding the code for fork and CPU scheduling is key. The actual code that changes
the race condition (excluding the system-call-related code) can be less than 2 LOC.
(Continue to next page.)
3
2.2 MLFQ scheduling (50 points)
The default scheduler of xv6 adopts a round-robin (RR) policy. In this part, you are going to
implement a scheduler that adopts a scheduling algorithm similar to the MLFQ scheduling policy
we discussed in class.
Specifically, the MLFQ-like process scheduler should work following the rules below:
• Rule 1: There are three different scheduling priorities: 3, 2, and 1, with 3 being the highest
and 1 being the lowest.
• Rule 2: At any given time, the scheduling priority of a process is set to one of the three
values above.
• Rule 3: Runnable processes are scheduled based on their scheduling priorities: processes
with higher priorities will be scheduled before those with lower priorities. RR is used for
scheduling processes that have the same priority.
• Rule 4: When a process is forked, its scheduling priority is set to 3, and its priority is
changed using the following rule.
• Rule 5: Except for the lowest priority (i.e., priority 1), each priority is associated with a
scheduling allotment, which is the number of times that a process with this priority can be
scheduled before the process is demoted to the next lower priority. For example,
– When a process is created, its scheduling priority is set to 3. When this process has
been scheduled x times since its scheduling priority was set to 3, its scheduling priority
is demoted to 2. Therefore, the scheduling allotment for priority 3 is x. The default
value of x is 2.
– When a process with scheduling priority 2 has been scheduled y times since its scheduling priority was set to 2, its scheduling priority is demoted to 1. Therefore, the scheduling allotment for priority 2 is y. The default value of y is 4.
• Rule 6: After a process’s scheduling priority is demoted to 1, it stays with that priority
until it completes.
• Rule 7: When user code uses the set sched() interface to set the scheduling policy to
MLFQ, the scheduler should be reset as if it is a fresh start. This means that the scheduling
priority of the existing processes should be reset back to 3.
2.2.1 The test program, test cases and their expected output
(1) To help you implement and debug, a scheduling tracing functionality has been added to the
base code. When this tracing functionality is enabled, the kernel prints a string like the
following every time before a process is scheduled.
[MLFQ] PID:7|PRT:3
The above string means the MLFQ scheduler is going to schedule the process with PID 7, and
the process’s scheduling priority is 3. With this scheduling tracing functionality, you can see
the sequence of processes that the scheduler schedules.
4
(2) The code (schdtest.c) for test program that will be used for grading (schdtest) has been
provided. This code is not supposed to be changed except for commenting out or removing
the stub functions at the top. Reading and understanding this test program and each of the
test cases will be helpful.
(3) Five test cases are used in the test program. Each of this test cases and their expected output
are described as follows.
• Test case 1: In this test case, the parent process enables the scheduling tracing functionality, sets the scheduler type to the default one (i.e., RR), creates 3 child processes,
each of which performs some long computation, and waits for their completion. When
all three child process complete, the parent process disables the scheduling tracing. The
expected scheduling tracing output is as follows:
>>>>> Test case 1: testing default scheduler (RR) ...
Parent: child (pid=4) created!
Parent: child (pid=5) created!
Parent: child (pid=6) created!
[RR] PID:4|PRT:0 -> [RR] PID:5|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:4|PRT:0 -> [RR] PID:5|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:4|PRT:0 -> [RR] PID:5|PRT:0 -> [RR] PID:6|PRT:0 ->
...
[RR] PID:3|PRT:0 -> [RR] PID:6|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:6|PRT:0 -> [RR] PID:6|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:3|PRT:0 ->
Since the RR scheduler does not use scheduling priority, the scheduling priority of individual processes should be set to 0 when RR is in effect. From the output we can see
that the RR was indeed the scheduling policy.
• Test case 2: In this test case, the parent process enables the scheduling tracing functionality, sets the scheduler type to MLFQ, creates 3 child processes, each of which performs
some long computation, and waits for their completion. When all three child process
complete, the parent process disables the scheduling tracing. The expected scheduling
tracing output is as follows:
>>>>> Test case 2: testing MLFQ scheduler with default allotment ...
Parent: child (pid=7) created!
Parent: child (pid=8) created!
Parent: child (pid=9) created!
[MLFQ] PID:7|PRT:3 -> [MLFQ] PID:8|PRT:3 -> [MLFQ] PID:9|PRT:3 ->
[MLFQ] PID:7|PRT:3 -> [MLFQ] PID:8|PRT:3 -> [MLFQ] PID:9|PRT:3 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:8|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:8|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
...
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:8|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:3|PRT:3 -> [MLFQ] PID:8|PRT:1 ->
[MLFQ] PID:3|PRT:3 -> [MLFQ] PID:9|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
5
[MLFQ] PID:9|PRT:1 -> [MLFQ] PID:9|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
[MLFQ] PID:9|PRT:1 -> [MLFQ] PID:3|PRT:2 ->
The default allotments are used in this test case. Therefore, as shown in the scheduling
tracing output, the three child processes started with priority 3 at the beginning. They
were scheduled in an RR manner 2 times and were demoted to priority 2 (because the
default allotment for priority 3 is 2). While their scheduling priority was 2, they were
scheduled in an RR manner 4 times and then were demoted to priority 1 (because the
default allotment for priority 2 is 4).
Note that the PID of the parent process is 3 in this example. The parent process was
not scheduled until the end of the trace because it was waiting for the child processes’
completion. It was scheduled three times at the end (see the last three lines in the output),
each of which was returning from wait() when one of the child processes exited.
• Test case 3: This is a repeat of test case 1.
• Test case 4: In this test case, the parent process enables the scheduling tracing functionality, sets the scheduler type to MLFQ, creates 3 child processes, each of which performs
some long computation, and waits for their completion. In the middle of the long computation, one of the three child process (whose PID is multiples of 3) forks a grand-child
process which is termed as “runtime generated process” in the test code, and waits for
its completion. When all three child process complete, the parent process disables the
scheduling tracing. The expected scheduling tracing output is as follows:
>>>>> Test case 4: testing MLFQ scheduler with runtime generated process ...
Parent: child (pid=13) created!
Parent: child (pid=14) created!
Parent: child (pid=15) created!
[MLFQ] PID:13|PRT:3 -> [MLFQ] PID:14|PRT:3 -> [MLFQ] PID:15|PRT:3 ->
[MLFQ] PID:13|PRT:3 -> [MLFQ] PID:14|PRT:3 -> [MLFQ] PID:15|PRT:3 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
...
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:16|PRT:3 -> [MLFQ] PID:16|PRT:3 -> [MLFQ] PID:16|PRT:2 ->
[MLFQ] PID:16|PRT:2 -> [MLFQ] PID:16|PRT:2 -> [MLFQ] PID:16|PRT:2 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
...
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:3|PRT:3 -> [MLFQ] PID:14|PRT:1 ->
[MLFQ] PID:16|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:3|PRT:3 ->
[MLFQ] PID:16|PRT:1 -> [MLFQ] PID:16|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
...
[MLFQ] PID:16|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
...
[MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:3|PRT:2 ->
6
This test case is similar to test case 2 but with a new process generated during runtime.
In the above output, the PID of the runtime-generated process is 16, and the PID of the
runtime-generated process’s parent is 15. If one understands the expected output of test
case 2, the above output for this test case should be easily understandable.
• Test case 5: This test case is similar to test case 2 but with different allotments than
the default one. The allotments of priority 3 and 2 are set to 4 and 8 before the test, and
they are set back to the default values after the test. The expected scheduling tracing
output is as follows:
>>>>> Test case 5: testing MLFQ scheduler with new allotments ...
Parent: child (pid=17) created!
Parent: child (pid=18) created!
Parent: child (pid=19) created!
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:1 -> [MLFQ] PID:18|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
[MLFQ] PID:17|PRT:1 -> [MLFQ] PID:18|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
...
[MLFQ] PID:17|PRT:1 -> [MLFQ] PID:18|PRT:1 -> [MLFQ] PID:3|PRT:3 ->
[MLFQ] PID:3|PRT:3 -> [MLFQ] PID:17|PRT:1 -> [MLFQ] PID:3|PRT:3 ->
[MLFQ] PID:3|PRT:3 -> [MLFQ] PID:19|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
[MLFQ] PID:19|PRT:1 -> [MLFQ] PID:19|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
[MLFQ] PID:19|PRT:1 -> [MLFQ] PID:3|PRT:2 -> [MLFQ] PID:3|PRT:2 ->
Again, the above output should be easily understandable if one understands that of test
case 2.
2.2.2 What to do
(1) If you run the test program included in the base code, you’ll notice that the output of the OS
kernel scheduling tracing messages is mixed with the messages printed by the parent process.
This is because scheduling context switches happen as the parent process is forking child
processes. To ensure that the test program can generate a nicely formatted output as shown
above, your job is to implement a functionality that allows user programs to pause scheduling
different processes.
• Write a system call that pauses process scheduling. When process scheduling is paused,
the OS will keep running the current process until process scheduling is enabled again.
• Write the corresponding system call user space wrapper function, and declare it in
“user.h”. The wrapper function’s prototype should be:
7
void pause_scheduling(int pause);
– Description: This function pauses process scheduling.
– Arguments: This function takes one arguments.
– pause: To pause process scheduling, set this argument to 1. To enable process
scheduling, set this argument to 0.
– Return value: This function has no return value.
(2) Implement the functionality that allows user programs to set the allotments of different
scheduling priorities.
• Write a system call that sets the allotments of a scheduling priority.
• Write the corresponding system call user space wrapper function, and declare it in
“user.h”. The wrapper function’s prototype should be:
int mlfq_set_allotment(int priority, int allotment);
– Description: This function sets allotment of the “priority” (first arg) to “allotment”
(second arg).
– Arguments: This function takes two arguments.
– priority: the scheduling priority of which the allotment is to set.
– allotment: the new allotment value.
– Return value: On successfully setting the allotment for the priority, this function
returns 0. The function returns -1 on failures.
.
(3) Implement the MLFQ scheduling policy, remove the stub functions defined at the beginning
of schdtest.c (by simply removing the “STUB FUNCS” macro definition), and test your
implementation.
Note: Your implementation should keep the patch that fixes the always-100% CPU utilization
problem. If your code causes the problem to re-occur, 10 points off (see the 4th point in the
“Grading” section for details).
2.2.3 Tips
You may have noticed that the MLFQ scheduling policy you are going to implement is referred
to as MLFQ-like scheduling policy in the above description. The difference between the MLFQ
policy you will be implementing in this project and the MLFQ policy you learned in class is that
the MLFQ policy in this project does not mandate using different queues for different scheduling
priorities. Therefore, you are allowed to keep the current single-queue design intact in xv6 and
implement the required MLFQ logic. In other words, here the ”Q” is not necessarily physical
queues that are backed by queue data structures. It can be logical queues as well.
Learning in xv6 code how process scheduling context switches happen will be helpful for implementing the functionality of pausing process scheduling.
(Continue to next page.)
8
3 Process scheduling in xv6 - Q&A (30 points)
Answer the following questions about process scheduling implementation.
Q1: (10 points) Does xv6 kernel use cooperative approach or non-cooperative approach to gain
control while a user process is running? Explain how xv6’s approach works using xv6’s code.
Q2: (10 points) After fork() is called, why does the parent process run before the child process
in most of the cases? But in some cases, the child does run first. In what scenario will the
child process run before the parent process after fork()?
Q3: (10 points) When the scheduler de-schedules an old process and schedules a new process, it
saves the context (i.e., the CPU registers) of the old process and load the context of the new
process. Show the code which performs these context saving/loading operations. Show how
this piece of code is reached when saving the old process’s and loading the new process’s
context.
Key in your answers to the above questions with any the editor you prefer, export them in a PDF
file named “xv6-sched-mechanisms.pdf”, and submit the file to the assignment link in Brightspace.
9
4 Submit your work
Once your code in your GitHub private repository is ready for grading, submit a text
file named “DONE” (and the previous “xv6-sched-mechanisms.pdf”) to the assignment
link in Brightspace. We will not be able to know your code in your GitHub repository is ready for grading until we see the ”DONE” file in Brightspace. Forgetting to
submit the ”DONE” file will lead to a late penalty applied, as specified later in the
”Grading” section.
Important notes:
• If you have referred to any form of online materials or resources when completing this project
(code and Q&A), please state all the references in this “DONE” file. Failure to do so, once
detected, will lead to zero points for the entire project and further penalties depending on
the severity of the violation.
• To encourage (discourage) early (late) starts on this project, the instructor and the TAs will
not respond to questions related to the project on the due date.
Suggestion: Test your code thoroughly on a CS machine before submitting.
10
5 Grading
The following are the general grading guidelines for this and all future projects.
(1) The code in your repository will not be graded until a “DONE” file is submitted
to Brightspace.
(2) The submission time of the “DONE” file shown on the Brightspace system will be used to
determine if your submission is on time or to calculate the number of late days. Late penalty
is 10% of the points scored for each of the first two days late, and 20% for each of the days
thereafter.
(3) If you are to compile and run the xv6 system on the department’s remote cluster, remember to
use the baseline xv6 source code provided by our GitHub classroom. Compiling and running
xv6 source code downloaded elsewhere can cause 100% CPU utilization on QEMU.
Removing the patch code from the baseline code will also cause the same problem. So make
sure you understand the code before deleting them.
If you are reported by the system administrator to be running QEMU with 100% CPU utilization on QEMU, 10 points off.
(4) If the submitted patch cannot successfully patched to the baseline source code, or the patched
code does not compile:
1 TA will try to fix the problem (for no more than 3 minutes);
2 if (problem solved)
3 1%-10% points off (based on how complex the fix is, TA’s discretion);
4 else
5 TA may contact the student by email or schedule a demo to fix the problem;
6 if (problem solved)
7 11%-20% points off (based on how complex the fix is, TA’s discretion);
8 else
9 All points off;
So in the case that TA contacts you to fix a problem, please respond to TA’s email promptly
or show up at the demo appointment on time; otherwise the line 9 above will be effective.
(5) If the code is not working as required in the project spec, the TA should take points based on
the assigned full points of the task and the actual problem.
(6) Lastly but not the least, stick to the collaboration policy stated in the syllabus:
you may discuss with you fellow students, but code should absolutely be kept
private. Any kind of cheating will result in zero point on the project, and further
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:TCS3393 DATA MINING代做、代寫Python/Java編程
  • 下一篇:CS551J編程代寫、Java/c++程序設計代做
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    欧美乱妇23p| 久久久精品人体av艺术| 亚洲欧美日韩精品综合在线观看| 色综合天天天天做夜夜夜夜做| 国产ts人妖一区二区| 美女视频黄频大全不卡视频在线播放| 一区二区三区在线观看动漫| 国产精品久99| 亚洲精品国产高清久久伦理二区| 一区二区三区四区在线免费观看| 亚洲精品中文字幕乱码三区| 一区二区三区四区视频精品免费 | 国内精品一区二区| 伊人成人在线视频| 亚洲欧美日本日韩| 欧美性色黄大片| 正在播放一区二区| 久久蜜臀精品av| 国产精品电影一区二区| 亚洲黄色av一区| 日本不卡1234视频| 丁香婷婷综合网| 欧美精品黄色| 母乳一区在线观看| 欧美日韩不卡一区| 久久这里只有精品视频网| 国产精品入口麻豆九色| 亚洲综合激情网| 经典三级一区二区| 色综合久久综合中文综合网| 亚洲欧洲一区| 欧美日韩国产成人在线免费| 精品91自产拍在线观看一区| 亚洲欧洲在线观看av| 天堂午夜影视日韩欧美一区二区| 国产一区二区免费在线| 欧美.www| 色综合久久久久久久久| 日韩精品一区二区三区老鸭窝| 国产精品女人毛片| 日韩福利电影在线观看| www.性欧美| 老司机一区二区三区| 日韩欧美国产一区二区三区| 亚洲人成精品久久久久久| 久久国产夜色精品鲁鲁99| 99精品视频在线免费观看| 国产精品亚洲综合| 2020国产精品自拍| 亚洲成人免费观看| 91在线看国产| 日本丶国产丶欧美色综合| 久久精品人人做| 奇米一区二区三区| 欧美三区不卡| 8x8x8国产精品| 亚洲一区av在线| 成人av网在线| 色爱区综合激月婷婷| 欧美极品少妇xxxxⅹ高跟鞋 | 亚洲二区在线| 精品国产乱码久久久久久1区2区| 亚洲国产精品久久人人爱| 成人免费视频一区| 一本一本大道香蕉久在线精品 | 91蝌蚪porny| 欧美电影在哪看比较好| 亚洲午夜精品久久久久久久久| 99在线精品免费| 欧美乱妇15p| 日韩高清在线不卡| 中文一区二区| 欧美激情资源网| 成人午夜av影视| 欧美日韩一区精品| 水蜜桃久久夜色精品一区的特点| 欧美成ee人免费视频| 日韩美女一区二区三区四区| 五月婷婷久久丁香| 一区二区高清| 国产精品麻豆99久久久久久| 成人丝袜高跟foot| 91精品国产高清一区二区三区蜜臀| 亚洲国产精品一区二区www| 国产精品成人一区二区网站软件| 日韩免费视频一区| 国产精品18久久久久久久久久久久 | 中文字幕va一区二区三区| 成人激情午夜影院| 日韩一级片网站| 国产一区二区在线视频| 日本韩国欧美在线| 日日夜夜一区二区| 久久xxxx| 蜜桃视频一区二区三区在线观看 | 亚洲乱码中文字幕综合| 国产一区二区三区四区hd| 国产精品污污网站在线观看| 色综合色综合色综合色综合色综合 | 欧美极品少妇xxxxⅹ高跟鞋| 91在线免费视频观看| 久久久久国产精品厨房| 99精品视频一区二区三区| 欧美精品一区二区三区久久久 | 日韩亚洲视频| 亚洲在线视频网站| 久久精品伊人| 男男视频亚洲欧美| 欧美夫妻性生活| 成人性生交大片免费看在线播放| 欧美成人三级在线| 97久久人人超碰| 一区在线观看免费| 国产精品美女久久久| 日本在线不卡一区| 911精品国产一区二区在线| 成人免费毛片a| 欧美精彩视频一区二区三区| 亚洲国产激情| 亚洲3atv精品一区二区三区| 欧美在线观看一区二区| 国产精品1区2区3区| 久久精品夜色噜噜亚洲a∨| 黑人中文字幕一区二区三区| 亚洲午夜久久久久久久久久久| 在线免费观看不卡av| 国产精一区二区三区| 国产视频一区二区在线| 在线视频亚洲| 久久不见久久见免费视频7| 精品乱码亚洲一区二区不卡| 欧美日韩亚洲在线| 污片在线观看一区二区| 91精品在线一区二区| 欧美日韩免费观看一区| 亚洲va欧美va人人爽| 日韩午夜激情av| 韩国在线一区| 麻豆免费精品视频| 中文字幕不卡的av| 久久综合九色99| av一区二区三区在线| 一区二区三区欧美| 日韩一区二区三区视频在线观看 | 3d成人动漫网站| 影音先锋中文字幕一区二区| 日本免费在线视频不卡一不卡二| 欧美精品一区二区三区在线播放| 亚洲精品影院| 国产精品一区二区不卡| 亚洲精品视频在线| 日韩一区二区免费高清| 一本色道久久99精品综合| 国产精品中文字幕一区二区三区| 国产精品美女久久久久av爽李琼| 久久一区国产| 欧美视频四区| 国产精品99久久久久| 亚洲午夜视频在线观看| www国产精品av| 精品视频123区在线观看| 影音先锋久久| 99re66热这里只有精品3直播| 日本中文字幕一区二区有限公司| 国产欧美在线观看一区| 欧美美女bb生活片| 国产亚洲一级| 国产精品porn| 成人app在线| 国内精品写真在线观看| 亚洲国产美女搞黄色| 国产精品入口麻豆原神| 欧美成人vr18sexvr| 日本高清无吗v一区| 亚洲精品视频一区二区三区| 波多野结衣亚洲一区| 久久99精品国产麻豆不卡| 亚洲国产你懂的| 亚洲图片你懂的| 国产偷v国产偷v亚洲高清 | 国产成人福利片| 裸体在线国模精品偷拍| 亚洲一区在线观看视频| 亚洲欧美在线视频观看| 久久伊99综合婷婷久久伊| 欧美精品久久99久久在免费线| 免费久久久一本精品久久区 | 欧美高清在线视频| 久久众筹精品私拍模特| 日韩一区二区三区精品视频| 欧美视频一区二| 色悠悠亚洲一区二区| 久久精品日韩欧美| 免费亚洲视频| 小嫩嫩精品导航| 亚洲一区二区三区四区中文| 亚洲每日在线| 国产亚洲欧美另类一区二区三区| 亚洲人成久久| 一区二区三区四区五区视频 |