91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CEG5301代做、MATLAB編程語言代寫

時間:2024-03-15  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



CEG5301 Machine Learning with Applications:
Part I: Homework #3
Important note: the due date is 17/03/2024. Please submit the softcopy of your report
to the submission folder in CANVAS. Late submission is not allowed unless it is well
justified. Please supply the MATLAB code or Python Code in your answer if computer
experiment is involved.
Please note that the MATLAB toolboxes for RBFN and SOM are not well developed.
Please write your own codes to implement RBFN and SOM instead of using the
MATLAB toolbox.
Q1. Function Approximation with RBFN (10 Marks)
Consider using RBFN to approximate the following function:
𝑦𝑦 = 1.2 sin(𝜋𝜋𝜋𝜋) − cos(2.4𝜋𝜋𝜋𝜋) , 𝑓𝑓𝑓𝑓𝑓𝑓 w**9;w**9; ∈ [−1.6, 1.6]
The training set is constructed by dividing the range [−1.6, 1.6] using a uniform step
length 0.08, while the test set is constructed by dividing the range [−1.6, 1.6] using
a uniform step length 0.01. Assume that the observed outputs in the training set are
corrupted by random noise as follows.
𝑦𝑦(𝑖𝑖) = 1.2 sin 𝜋𝜋𝜋𝜋(𝑖𝑖)  − cos 2.4𝜋𝜋𝜋𝜋(𝑖𝑖)  + 0.3𝑛𝑛(𝑖𝑖)
where the random noise 𝑛𝑛(𝑖𝑖) is Gaussian noise with zero mean and stand deviation of
one, which can be generated by MATLAB command randn. Note that the test set is not
corrupted by noises. Perform the following computer experiments:
a) Use the exact interpolation method (as described on pages 17-26 in the slides of
lecture five) and determine the weights of the RBFN. Assume the RBF is Gaussian
function with standard deviation of 0.1. Evaluate the approximation performance of
the resulting RBFN using the test set.
 (3 Marks)
b) Follow the strategy of “Fixed Centers Selected at Random” (as described on page 38
in the slides of lecture five), randomly select 20 centers among the sampling points.
Determine the weights of the RBFN. Evaluate the approximation performance of the
resulting RBFN using test set. Compare it to the result of part a).
(4 Marks)
c) Use the same centers and widths as those determined in part a) and apply the
regularization method as described on pages 43-46 in the slides for lecture five. Vary
the value of the regularization factor and study its effect on the performance of RBFN.
(3 Marks)
2
Q2. Handwritten Digits Classification using RBFN (20 Marks)
In this task, you will build a handwritten digits classifier using RBFN. The training data
is provided in MNIST_M.mat. Each binary image is of size 28*28. There are 10
classes in MNIST_M.mat; please select two classes according to the last two different
digits of your matric number (e.g. A0642311, choose classes 3 and 1; A1234567,
choose classes 6 and 7). The images in the selected two classes should be assigned the
label “1” for this question’s binary classification task, while images in all the remaining
eight classes should be assigned the label “0”. Make sure you have selected the correct
2 classes for both training and testing. There will be some mark deduction for wrong
classesselected. Please state your handwritten digit classes for both training and testing.
In MATLAB, the following code can be used to load the training and testing data:
-------------------------------------------------------------------------------------------------------
load mnist_m.mat;
% train_data  training data, 784x1000 matrix
% train_classlabel  the labels of the training data, 1x1000 vector
% test_data  test data, 784x250 matrix
% train_classlabel  the labels of the test data, 1x250 vector
-------------------------------------------------------------------------------------------------------
After loading the data, you may view them using the code below:
-------------------------------------------------------------------------------------------------------
tmp=reshape(train_data(:,column_no),28,28);
imshow(tmp);
-------------------------------------------------------------------------------------------------------
To select a few classes for training, you may refer to the following code:
-------------------------------------------------------------------------------------------------------
trainIdx = find(train_classlabel==0 | train_classlabel==1 | train_classlabel==2); % find the
location of classes 0, 1, 2
Train_ClassLabel = train_classlabel(trainIdx);
Train_Data = train_data(:,trainIdx);
-------------------------------------------------------------------------------------------------------
Please use the following code to evaluate:
-------------------------------------------------------------------------------------------------------
TrAcc = zeros(1,1000);
TeAcc = zeros(1,1000);
thr = zeros(1,1000);
TrN = length(TrLabel);
TeN = length(TeLabel);
for i = 1:1000
 t = (max(TrPred)-min(TrPred)) * (i-1)/1000 + min(TrPred);
 thr(i) = t;

TrAcc(i) = (sum(TrLabel(TrPred<t)==0) + sum(TrLabel(TrPred>=t)==1)) / TrN;
TeAcc(i) = (sum(TeLabel(TePred<t)==0) + sum(TeLabel(TePred>=t)==1)) / TeN;
end
3
plot(thr,TrAcc,'.- ',thr,TeAcc,'^-');legend('tr','te');
-------------------------------------------------------------------------------------------------------
TrPred and TePred are determined by TrPred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TrData(: , j)) Ү**;Ү**;
𝑖𝑖=0 and
TePred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TeData(: , j)) Ү**;Ү**;
𝑖𝑖=0 where Ү**;Ү**; is the number of hidden neurons.
TrData and TeData are the training and testing data selected based on your matric
number. TrLabel and TeLabel are the ground-truth label information (Convert to {0,1}
before use!).
You are required to complete the following tasks:
a) Use Exact Interpolation Method and apply regularization. Assume the RBF is
Gaussian function with standard deviation of 100. Firstly, determine the weights of
RBFN without regularization and evaluate its performance; then vary the value of
regularization factor and study its effect on the resulting RBFNs’ performance.
(6 Marks)

b) Follow the strategy of “Fixed Centers Selected at Random” (as described in page 38
of lecture five). Randomly select 100 centers among the training samples. Firstly,
determine the weights of RBFN with widths fixed at an appropriate size and compare
its performance to the result of a); then vary the value of width from 0.1 to 10000 and
study its effect on the resulting RBFNs’ performance.
(8 Marks)

c) Try classical “K-Mean Clustering” (as described in pages 39-40 of lecture five) with
2 centers. Firstly, determine the weights of RBFN and evaluate its performance; then
visualize the obtained centers and compare them to the mean of training images of each
class. State your findings.
(6 Marks)
4
Q3. Self-Organizing Map (SOM) (20 Marks)
a) Write your own code to implement a SOM that maps a **dimensional output layer
of 40 neurons to a “hat” (sinc function). Display the trained weights of each output
neuron as points in a 2D plane, and plot lines to connect every topological adjacent
neurons (e.g. the 2nd neuron is connected to the 1st and 3rd neuron by lines). The training
points sampled from the “hat” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
x = linspace(-pi,pi,400);
trainX = [x; sinc(x)];  2x400 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(3 Marks)
b) Write your own code to implement a SOM that maps a 2-dimensional output layer
of 64 (i.e. 8×8) neurons to a “circle”. Display the trained weights of each output neuron
as a point in the 2D plane, and plot lines to connect every topological adjacent neurons
(e.g. neuron (2,2) is connected to neuron (1,2) (2,3) (3,2) (2,1) by lines). The training
points sampled from the “circle” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
X = randn(800,2);
s2 = sum(X.^2,2);
trainX = (X.*repmat(1*(gammainc(s2/2,1).^(1/2))./sqrt(s2),1,2))';  2x800 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(4 Marks)
c) Write your own code to implement a SOM that clusters and classifies handwritten
digits. The training data is provided in Digits.mat. The dataset consists of images in 5
classes, namely 0 to 4. Each image with the size of 28*28 is reshaped into a vector and
stored in the Digits.mat file. After loading the mat file, you may find the 4 matrix/arrays,
which respectively are train_data, train_classlabel, test_data and test_classlabel. There
are totally 1000 images in the training set and 100 images in the test set. Please omit 2
classes according to the last digit of your matric number with the following rule:
omitted class1 = mod(the last digit, 5), omitted_class2 = mod(the last digit+1, 5). For
example, if your matric number is A06423**, ignore classes mod(7,5)=2 and
mod(8,5)=3; A1234569, ignore classes 4 and 0.
Thus, you need to train a model for a 3-classes classification task. Make sure you have
selected the correct 3 classes for both training and testing. There will be some mark
deduction for wrong classes selected. Please state your handwritten digit classes for
both training and testing.
After loading the data, complete the following tasks:
c-1) Print out corresponding conceptual/semantic map of the trained SOM (as
described in page 24 of lecture six) and visualize the trained weights of each output
neuron on a 10×10 map (a simple way could be to reshape the weights of a neuron
5
into a 28×28 matrix, i.e. dimension of the inputs, and display it as an image). Make
comments on them, if any.
(8 Marks)
c-2) Apply the trained SOM to classify the test images (in test_data). The
classification can be done in the following fashion: input a test image to SOM, and
find out the winner neuron; then label the test image with the winner neuron’s label
(note: labels of all the output neurons have already been determined in c-1).
Calculate the classification accuracy on the whole test set and discuss your
findings.
(5 Marks)
The recommended values of design parameters are:
1. The size of the SOM is 1×40 for a), 8×8 for b), 10×10 for c).
2. The total iteration number N is set to be 500 for a) & b), 1000 for c). Only the
first (self-organizing) phase of learning is used in this experiment.
3. The learning rate 𝜂𝜂(𝑛𝑛) is set as:
𝜂𝜂(𝑛𝑛) = 𝜂𝜂0 exp  − 𝑛𝑛
𝜏𝜏2
  , 𝑛𝑛 = 0,1,2, …
where 𝜂𝜂0 is the initial learning rate and is set to be 0.1, 𝜏𝜏2 is the time constant
and is set to be N.
4. The time-varying neighborhood function is:
ℎ𝑗𝑗,𝑖𝑖(w**9;w**9;)(𝑛𝑛) = exp  − 𝑑𝑑𝑗𝑗,𝑖𝑖
2
2ҵ**;ҵ**;(𝑛𝑛)2  , 𝑛𝑛 = 0,1,2, …
where 𝑑𝑑𝑗𝑗,𝑖𝑖 is the distance between neuron j and winner i, ҵ**;ҵ**;(𝑛𝑛) is the effective
width and satisfies:
ҵ**;ҵ**;(𝑛𝑛) = ҵ**;ҵ**;0 exp  − 𝑛𝑛
𝜏𝜏1
  , 𝑛𝑛 = 0,1,2, …
where ҵ**;ҵ**;0 is the initial effective width and is set according to the size of output
layer’s lattice, 𝜏𝜏1 is the time constant and is chosen as 𝜏𝜏𝑖𝑖 = Ү**;Ү**;
log(ҵ**;ҵ**;0)
.
Again, please feel free to experiment with other design parameters which may be
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫COMP26020、代做c/c++,Java編程設(shè)計(jì)
  • 下一篇:代寫ACS130、代做C++設(shè)計(jì)編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    久久久蜜桃精品| 成人h动漫精品| 日韩精品一区二区三区视频| 午夜在线精品偷拍| 91蜜桃在线观看| 国产91精品在线观看| 免费看日韩精品| 国产精品欧美极品| 欧美精品一区二区三区一线天视频| 蜜桃久久精品乱码一区二区| 欧美精品七区| 99视频超级精品| 懂色av一区二区在线播放| 久久国产精品区| 日韩黄色小视频| 首页综合国产亚洲丝袜| 国产区在线观看成人精品 | 无码av免费一区二区三区试看 | 亚洲午夜久久久久久久久久久| 国产人妖乱国产精品人妖| 久久人人97超碰com| 色婷婷综合视频在线观看| 国产日韩精品一区观看 | 国产福利精品导航| 精品一区二区三区在线观看| 麻豆精品一区二区综合av| 日日摸夜夜添夜夜添国产精品| 欧美国产精品一区二区三区| 国产三级久久久| 国产目拍亚洲精品99久久精品| 精品国产乱码久久久久久免费| 欧美本精品男人aⅴ天堂| 欧美一级高清片| 精品久久五月天| 久久久影院官网| 国产精品三级av在线播放| 国产亚洲一区二区在线观看| 2021中文字幕一区亚洲| 欧美精品一区二区三区蜜臀| 久久精品人人做人人爽人人| 日韩免费观看2025年上映的电影| 精品美女在线观看| 久久综合五月天婷婷伊人| 国产日本欧美一区二区| 中文字幕亚洲一区二区av在线| 亚洲精品ww久久久久久p站| 亚洲婷婷国产精品电影人久久| 亚洲免费观看高清完整版在线 | 中文字幕第一页久久| 亚洲欧美日韩国产中文在线| 香蕉影视欧美成人| 精品一区中文字幕| 成人av网站免费观看| 欧美日韩 国产精品| 日韩午夜在线电影| 欧美视频三区在线播放| 欧美理论电影在线| 91精品国产麻豆国产自产在线 | 欧美日韩一区在线观看视频| 亚洲日本精品国产第一区| 一本色道久久加勒比精品| 欧美日韩亚洲综合在线 | 色欧美88888久久久久久影院| 欧美日韩电影一区| 国产午夜精品一区二区| 国产精品免费久久| 日韩国产精品久久| 色综合久久综合网97色综合| 亚洲久久在线| 51精品秘密在线观看| 国产日韩欧美亚洲| 蜜臀精品一区二区三区在线观看| 成人av电影在线观看| 国产精品五区| 日韩美女天天操| 亚洲一区二区三区四区在线免费观看 | 亚洲视频一二三| 91女厕偷拍女厕偷拍高清| 欧美美女一区二区| 日本最新不卡在线| 国产伦精品一区二区三区| 国产精品女主播av| 成人午夜大片免费观看| 欧美日韩国产大片| 奇米影视一区二区三区| 亚洲免费综合| 亚洲精品videosex极品| 韩国在线视频一区| 国产精品天美传媒沈樵| 97精品超碰一区二区三区| 日韩一区二区电影网| 九九久久精品视频| 欧美性猛片aaaaaaa做受| 日本特黄久久久高潮| 乱人伦精品视频在线观看| 亚洲一区成人在线| 国产伦精品一区| 午夜精品福利一区二区蜜股av | 欧美一区二区三区精品| 国产九色精品成人porny| 欧美精品久久一区二区三区| 国产综合成人久久大片91| 日本二三区不卡| 久久精品国产成人一区二区三区| 欧美三级在线视频| 国内外成人在线| 51午夜精品国产| 国产激情91久久精品导航| 欧美一级二级在线观看| 91亚洲男人天堂| 国产精品久久夜| 99热精品在线观看| 午夜精品久久久久影视| 在线精品视频一区二区三四| 另类人妖一区二区av| 7777精品伊人久久久大香线蕉超级流畅 | 国产欧美精品日韩区二区麻豆天美| 欧美日韩少妇| 一二三区精品视频| 在线精品视频一区二区三四| 国产一区二区三区精品欧美日韩一区二区三区 | 久久99国产精品久久99果冻传媒| 67194成人在线观看| www.亚洲激情.com| 亚洲欧美日韩中文字幕一区二区三区| 亚洲日产国产精品| 蜜臀av一区二区三区| 日韩一级片在线观看| 欧美激情无毛| 亚洲成人第一页| 91精品久久久久久蜜臀| 欧美女人交a| 偷拍一区二区三区| 精品少妇一区二区三区日产乱码| 国产精品多人| 久久精品国产亚洲高清剧情介绍| 日韩色视频在线观看| 雨宫琴音一区二区在线| 免费成人在线观看| 国产日韩欧美精品综合| 久久国产精品免费一区| 丰满岳乱妇一区二区三区| 亚洲另类在线制服丝袜| 欧美喷水一区二区| 欧美午夜精品理论片a级大开眼界| 亚洲午夜免费视频| 精品国产免费一区二区三区四区| 亚洲精品影院| 国产1区2区3区精品美女| 亚洲美女视频在线观看| 在线电影国产精品| 国产午夜精品一区二区三区欧美| 国产成人综合在线观看| 亚洲精选在线视频| 亚洲精品在线观| 色乱码一区二区三区88| 欧美一站二站| 久久精品国产色蜜蜜麻豆| 中文字幕在线观看不卡| 欧美一级在线视频| 欧美在线综合| 欧美三区在线| 国产精品综合在线视频| 亚洲mv在线观看| 国产精品免费视频网站| 欧美一区二区三区思思人| 国产精品美女xx| 欧美aⅴ99久久黑人专区| 精品亚洲porn| 亚洲大片精品永久免费| 国产精品午夜春色av| 欧美一级搡bbbb搡bbbb| 一本色道久久综合狠狠躁的推荐| 亚洲性色视频| av爱爱亚洲一区| 麻豆成人av在线| 亚洲成人7777| 一区二区三区在线视频观看| 久久久99免费| 91精品国产综合久久精品| 亚洲一区日韩在线| 今天的高清视频免费播放成人| 成人午夜精品在线| 韩国视频一区二区| 天天色综合成人网| 一区二区三区在线观看网站| 中文字幕av资源一区| 精品国产露脸精彩对白| 欧美人动与zoxxxx乱| 在线视频你懂得一区| 久久婷婷av| 国产农村妇女精品一区二区| 国产在线成人| 欧美日韩专区| 国产一区自拍视频| 欧美另类综合| 欧美日韩一区二区三区在线观看免| 99国产欧美久久久精品| 99精品视频在线观看免费| av中文字幕亚洲|