91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CSC420編程代寫、c/c++,Java程序代做

時間:2024-01-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Intro to Image Understanding (CSC420)
Assignment 1
Due Date: Jan 26th, 2024, 11:59:00 pm
Total: 120 marks
General Instructions:
• You are allowed to work directly with one other person to discuss the questions. However, you are still expected to write the solutions/code/report in your own words; i.e.
no copying. If you choose to work with someone else, you must indicate this in your
assignment submission. For example, on the first line of your report file (after your
own name and information, and before starting your answer to Q1), you should have
a sentence that says: “In solving the questions in this assignment, I worked together
with my classmate [name & student number]. I confirm that I have written the solutions/code/report in my own words”.
• Your submission should be in the form of an electronic report (PDF), with the answers
to the specific questions (each question separately), and a presentation and discussion
of your results. For this, please submit a file named report.pdf to MarkUs directly.
• Submit documented codes that you have written to generate your results separately.
Please store all of those files in a folder called assignment1, zip the folder and then
submit the file assignment1.zip to MarkUs. You should include a README.txt
file (inside the folder) which details how to run the submitted codes.
• Do not worry if you realize you made a mistake after submitting your zip file; you can
submit multiple times on MarkUs.
Part I: Theoretical Problems (60 marks)
[Question 1] Convolution (10 marks)
[1.a] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
1 −2 ≤ n ≤ 2
0 otherwise
(1)
[1.b] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
2 − |n| −2 ≤ n ≤ 2
0 otherwise
(2)
1
[Question 2] LTI Systems (15 marks)
We define a system as something that takes an input signal, e.g. x(n), and produces an
output signal, e.g. y(n). Linear Time-Invariant (LTI) systems are a class of systems that
are both linear and time-invariant. In linear systems, the output for a linear combination of
inputs is equal to the linear combination of individual responses to those inputs. In other
words, for a system T, signals x1(n) and x2(n), and scalars a1 and a2, system T is linear if
and only if:
T[a1x1(n) + a2x2(n)] = a1T[x1(n)] + a2T[x2(n)]
Also, a system is time-invariant if a shift in its input merely shifts the output; i.e. If T[x(n)] =
y(n), system T is time-invariant if and only if:
T[x(n − n0)] = y(n − n0)
[2.a] (5 marks) Consider a discrete linear time-invariant system T with discrete input signal
x(n) and impulse response h(n). Recall that the impulse response of a discrete system
is defined as the output of the system when the input is an impulse function δ(n), i.e.
T[δ(n)] = h(n), where:
δ(n) = (
1, if n = 0,
0, else.
Prove that T[x(n)] = h(n) ∗ x(n), where ∗ denotes convolution operation.
Hint: represent signal x(n) as a function of δ(n).
[2.b] (5 marks) Is Gaussian blurring linear? Is it time-invariant? Make sure to include your
justifications.
[2.c] (5 marks) Is time reversal, i.e. T[x(n)] = x(−n), linear? Is it time-invariant? Make
sure to include your justifications.
[Question 3] Polynomial Multiplication and Convolution (15 marks)
Vectors can be used to represent polynomials. For example, 3rd-degree polynomial (a3x
3 +
a2x
2 + a1x + a0) can by represented by vector [a3, a2, a1, a0].
If u and v are vectors of polynomial coefficients, prove that convolving them is equivalent to
multiplying the two polynomials they each represent.
Hint: You need to assume proper zero-padding to support the full-size convolution.
2
[Question 4] Laplacian Operator (20 marks)
The Laplace operator is a second-order differential operator in the “n”-dimensional Euclidean
space, defined as the divergence (∇) of the gradient (∇f). Thus if f is a twice-differentiable
real-valued function, then the Laplacian of f is defined by:
where the latter notations derive from formally writing:
Now, consider a 2D image I(x, y) and its Laplacian, given by ∆I = Ixx+Iyy. Here the second
partial derivatives are taken with respect to the directions of the variables x, y associated
with the image grid for convenience. Show that the Laplacian is in fact rotation invariant.
In other words, show that ∆I = Irr + Ir, where r and r
′ are any two orthogonal directions.
Hint: Start by using polar coordinates to describe a chosen location (x, y). Then use the
chain rule.
Part II: Implementation Tasks (60 marks)
[Question 5] Canny Edge Detector Robustness (10 marks)
Using the sample code provided in Tutorial 2, examine the sensitivity of the Canny edge
detector to Gaussian noise. To do so, take an image of your choice, and add i.i.d Gaussian
noise to each pixel. Analyze the performance of the edge detector as a function of noise variance. Include your observations and three sample outputs (corresponding to low, medium,
and high noise variances) in the report.
[Question 6] Edge Detection (50 marks)
In this question, the goal is to implement a rudimentary edge detection process that uses a
derivative of Gaussian, through a series of steps. For each step (excluding step 1) you are
supposed to test your implementation on the provided image, and also on one image of your
own choice. Include the results in your report.
Step I - Gaussian Blurring (10 marks): Implement a function that returns a 2D Gaussian matrix for input size and scale σ. Please note that you should not use any of the
existing libraries to create the filter, e.g. cv2.getGaussianKernel(). Moreover, visualize this
2D Gaussian matrix for two choices of σ with appropriate filter sizes. For the visualization,
3
you may consider a 2D image with a colormap, or a 3D graph. Make sure to include the
color bar or axis values.
Step II - Gradient Magnitude (10 marks): In the lectures, we discussed how partial
derivatives of an image are computed. We know that the edges in an image are from the
sudden changes of intensity and one way to capture that sudden change is to calculate the
gradient magnitude at each pixel. The edge strength or gradient magnitude is defined as:

where gx and gy are the gradients of image f(x, y) along x and y-axis direction respectively.
Using the Sobel operator, gx and gy can be computed as:
Implement a function that receives an image f(x, y) as input and returns its gradient g(x, y)
magnitude as output using the Sobel operator. You are supposed to implement the convolution required for this task from scratch, without using any existing libraries.
Step III - Threshold Algorithm (20 marks): After finding the image gradient, the
next step is to automatically find a threshold value so that edges can be determined. One
algorithm to automatically determine image-dependent threshold is as follows:
1. Let the initial threshold τ0 be equal to the average intensity of gradient image g(x, y),
as defined below:
where h and w are the height and width of the image under consideration.
2. Set iteration index i = 0, and categorize the pixels into two classes, where the lower
class consists of the pixels whose gradient magnitudes are less than τ0, and the upper
class contains the rest of the pixels.
3. Compute the average gradient magnitudes mL and mH of lower and upper classes,
respectively.
4. Set iteration i = i + 1 and update threshold value as:
τi =
mL + mH
2
5. Repeat steps 2 to 4 until |τi − τi−1| ≤ ϵ is satisfied, where ϵ → 0; take τi as final
threshold and denote it by τ .
4
Once the final threshold is obtained, each pixel of gradient image g(x, y) is compared
with τ . The pixels with a gradient higher than τ are considered as edge point and
is represented as white pixel; otherwise, it is designated as black. The edge-mapped
image E(x, y), thus obtained is:
E(x, y) = (
255, if g(x, y) ≥ τ
0, otherwise
Implement the aforementioned threshold algorithm. The input to this algorithm is the gradient image g(x, y) obtained from step II, and the output is a black and white edge-mapped
image E(x, y).
Step IV - Test (10 marks): Use the image provided along with this assignment, and also
one image of your choice to test all the previous steps (I to III) and to visualize your results
in the report. Convert the images to grayscale first. Please note that the input to each step
is the output of the previous step. In a brief paragraph, discuss how the algorithm works for
these two examples and highlight its strengths and/or its weaknesses.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:莆田純原鞋的3個常見進貨渠道-在哪買?多少錢STM潮鞋服終端供應鏈
  • 下一篇:代寫IRP 1 Coursework 01編程、代做Python程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    91丨porny丨蝌蚪视频| 欧美精品观看| 欧美日韩色综合| 亚洲aaa精品| 国产日韩欧美三级| 亚洲精品成人悠悠色影视| 欧美1级日本1级| 中文子幕无线码一区tr| 午夜性色一区二区三区免费视频 | 美女在线视频一区| 色欧美日韩亚洲| 亚洲影院久久精品| 国产精品豆花视频| 亚洲婷婷综合色高清在线| 一区免费在线| 亚洲综合在线第一页| 国产日韩欧美一区二区| 午夜欧美大尺度福利影院在线看| 色综合久久久久久久| 亚洲第四色夜色| 久久亚洲二区| 激情小说亚洲一区| 日韩视频在线观看一区二区| 播五月开心婷婷综合| 国产网红主播福利一区二区| 欧美aⅴ99久久黑人专区| 中文字幕字幕中文在线中不卡视频| 91免费视频大全| 国产精品电影一区二区三区| 国产精品美女xx| 日韩精品一区第一页| 欧美日韩一区精品| 国产不卡视频在线播放| 国产片一区二区| 一本色道久久综合| 青青草视频一区| 色爱区综合激月婷婷| 蜜臀av一级做a爰片久久| 91精选在线观看| 欧美人成网站| 亚洲成人资源在线| 51精品视频一区二区三区| 91丨九色丨蝌蚪富婆spa| 亚洲色图欧美激情| 久久婷婷av| 成人av手机在线观看| ...中文天堂在线一区| 色综合久久久久综合| 粉嫩绯色av一区二区在线观看| 久久国产日韩欧美精品| 久久婷婷一区二区三区| 一区二区日韩免费看| 久久69国产一区二区蜜臀| 久久综合视频网| 麻豆成人小视频| 成人黄色免费短视频| 国产嫩草影院久久久久| 在线视频精品一区| 国产91清纯白嫩初高中在线观看| 成人欧美一区二区三区小说| 欧美在线免费播放| 丁香婷婷综合网| 一个色综合网站| 欧美成人精品1314www| 亚洲欧洲午夜| 国产a久久麻豆| 亚洲午夜在线电影| 久久久一区二区| 一本色道久久综合精品竹菊| 国产精品自拍一区| 亚洲精品综合在线| 欧美xxx久久| 久久先锋影音| 欧美日韩亚洲一区三区| 精品一区二区三区欧美| 欧美精品一区二| 国产欧美日韩一区二区三区在线| 高清久久久久久| 亚洲成人免费看| 欧美国产乱子伦 | 日本精品一区二区三区高清| 午夜电影亚洲| 国产一区激情在线| 国产精品一区免费在线观看| 成人av免费在线播放| 99精品久久只有精品| 亚洲电影在线播放| 国产婷婷一区二区| 欧美色国产精品| 国产伦精品一区二区三区照片91| 97se亚洲国产综合自在线观| 蜜臀av性久久久久蜜臀aⅴ| 自拍偷拍亚洲综合| 日韩欧美不卡一区| 欧美亚洲禁片免费| 亚洲欧美日韩专区| 韩国免费一区| 国产馆精品极品| 一区二区三区在线免费观看 | 一本色道a无线码一区v| 亚洲精品社区| 国产精品国产亚洲精品看不卡15| 日韩电影一区二区三区| 亚洲欧美日韩中文播放| 久久久午夜电影| 欧美xxxxxxxx| 日韩一卡二卡三卡四卡| 欧美日韩在线播放三区| 在线亚洲免费| 99精品欧美一区| 成人黄色在线视频| 国产高清久久久| 久久99久久精品| 麻豆成人91精品二区三区| 午夜视频一区在线观看| 亚洲欧洲成人自拍| 欧美国产一区二区在线观看| 久久精品一区二区| www激情久久| 久久综合精品国产一区二区三区 | 日韩视频免费观看高清完整版| 欧美日韩成人一区二区| 欧美图区在线视频| 欧美特级限制片免费在线观看| 久久精品三级| 亚洲精品视频啊美女在线直播| 国产一区二区中文| 欧美日韩综合久久| 欧美日韩在线精品一区二区三区| 午夜日韩在线| 国产三区二区一区久久| 色香蕉久久蜜桃| 欧美一区二区美女| 久久久亚洲精品石原莉奈| 国产精品激情偷乱一区二区∴| 亚洲天堂2014| 天天av天天翘天天综合网色鬼国产| 精品在线免费视频| 成人国产精品免费网站| 国产精品v欧美精品∨日韩| 国产精品一区二区三区四区五区 | 欧美久久高跟鞋激| 久久麻豆一区二区| 一区二区视频免费在线观看| 免费精品视频在线| 成人动漫av在线| 99国产精品私拍| 欧美三级日韩在线| 精品少妇一区二区三区在线视频 | 日韩电影在线一区二区三区| 国产精品77777| 欧美va天堂| 久久一二三四| 日韩欧美一区二区在线视频| 亚洲国产精品成人综合色在线婷婷| 亚洲国产精品视频| 国产99精品国产| 亚洲人成影院在线观看| 午夜精品福利一区二区三区av| 国产中文字幕精品| 国内精品视频在线播放| 色哟哟欧美精品| 久久久国产精品午夜一区ai换脸| 亚洲曰韩产成在线| 国产suv精品一区二区三区| 国内一区二区在线视频观看| 91成人免费电影| 中文字幕精品一区二区精品绿巨人 | 亚洲乱码视频| 8v天堂国产在线一区二区| 亚洲色图第一区| 国产激情视频一区二区在线观看| 在线观看不卡| 久久国产免费看| 91啪亚洲精品| 欧美亚洲图片小说| 国产精品久久久久久久久免费丝袜| 免费看欧美女人艹b| 欧美日韩成人| 欧美女孩性生活视频| 亚洲人成网站色在线观看| 国产成人高清在线| 久久av二区| 国产精品人人做人人爽人人添| 国产在线一区二区| 国产亚洲欧美一区二区| 久久亚洲欧美国产精品乐播| 日本免费新一区视频| 激情成人亚洲| 精品日韩在线观看| 免费在线看一区| 亚洲精品乱码| xvideos.蜜桃一区二区| 琪琪久久久久日韩精品| 91久久综合| 久久久亚洲国产美女国产盗摄| 国产一区在线观看麻豆| 色综合久久九月婷婷色综合| 国产精品成人一区二区艾草| heyzo一本久久综合|