91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CS 202代寫、代做Operating Systems設計

時間:2023-12-07  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 202: Advanced Operating Systems
University of California, Riverside
Lab #3: xv6 Threads
Due: 12/02/2022, Friday, 11:59 p.m. (Pacific time)
Overview
In this project, you will be adding kernel-level thread support to xv6. First, you will implement a new
system call to create a kernel-level thread, called clone(). Then, using the clone() system call, you will
build a simple user-level library consisting of thread_create(), lock_acquire() and
lock_release() for thread management. Finally, you will show these things work by using a user-level
multi-threaded test program.
Before your start:
1. In Makefile, set the number of CPUs to 3 (CPUS := 3). You may debug your code using one
CPU, your demo and submission should have CPUS := 3.
2. Replace kernel/trampoline.S with the one provided at the end of this document. This new
trampoline.S is also available to download from eLearn.
Background: xv6 virtual address space memory layout
In xv6, every process has its own page table that defines a virtual address space used in the user mode.
When a process enters the kernel mode, the address space is switched to the kernel’s virtual address space.
Because of this, each process has separate stacks for the kernel and user spaces (aka. user stack and kernel
stack). Also, in xv6, each PCB maintains separate objects to store process’s register values:
struct proc {
 …
struct trapframe *trapframe; // data page for trampoline.S
struct context context; // swtch() here to run process
trapframe stores registers used in the user space when entering the kernel mode. context is for registers
in the kernel space when context-switched to another process.
Below figure illustrates the layout of a process’s virtual address space in xv6-riscv.
2
In the virtual address space, user text, data, and user stack are mapped at the bottom. At top, you can see
two special pages are mapped: trampoline and trapframe, each has the size of PGSIZE (= 4096 bytes).
The trampoline page maps the code to transition in and out of the kernel. The trapframe page maps
the PCB’s trapframe object so that it is accessible by a trap handler while in the user space (see Chapter
4 of the xv6 book for more details).
The mapping of those pages to process’s address space is done when a process is created. In fork(), it
calls proc_pagetable() which allocates a new address space and then performs mappings of
trampoline and trapframe pages. For example, in proc_pagetable()
if(mappages(pagetable, TRAPFRAME, PGSIZE,
(uint64)(p->trapframe), PTE_R | PTE_W) < 0){ ...
This means mapping the kernel object p->trapframe to the user address space defined by pagetable
at the memory location of TRAPFRAME.
Part 1: Clone() system call
In this part, the goal is to add a new system call to create a child thread. It should look like:
int clone(void *stack);
clone() does more or less what fork() does, except for the following major differences:
• Address space: Instead of creating a new address space, it should use the parent's address space.
This means a single address space (and thus the corresponding page table) is shared between the
parent and all of its children. Do not create a separate page table for a child.
• stack argument: This pointer argument specifies the starting address of the user-level stack
used by the child. The stack area must have been allocated by the caller (parent) before the call to
clone is made. Thus, inside clone(), you should make sure that, when this syscall is returned, a
child thread runs on this stack, instead of the stack of the parent. Some basic sanity check is required
for input parameters of clone(), e.g., stack is not null.
3
Similar to fork(), the clone() call returns the PID of the child to the parent, and 0 to the newly-created
child thread. And of course, the child thread created by clone() must have its own PCB. The number of
child threads per process is assumed to be at most 20.
To manage threads, add an integer type thread_id variable to PCB. The value of thread_id is 0 for the
parent process and greater than 0 (e.g., 1, 2, …) for its child threads created using clone().
There are also some modifications required for the wait() syscall.
• wait(): The parent process uses wait() to wait for a child process to exit and returns the child’s
PID. Also, wait() frees up the child’s resources such as PCB, memory space, page table, etc. This
becomes tricky for child threads created by clone() because some resources are now shared
among all the threads of the same process. Therefore, if the child is a thread, wait() must
deallocate only the thread local resources, e.g., clearing PCB and freeing & unmapping its own
trapframe, and must not deallocate the shared page table.
For simplicity, we will assume that only parent process calls clone() – a thread created by clone()
does not call clone() to create another child thread. Also, assume that a process does not call clone()
more than 20 times (i.e., up to 20 child threads). It is fine to assume that only the parent uses wait() and
the parent is the last one to exit (i.e., after all of its child threads have exited). In addition, parent and child
do not need to share file descriptors. These assumptions will make the implementation a lot easier.
Tips:
• The best way to start would be creating clone() by duplicating fork(). fork() uses
allocproc() to allocate PCB, trapframe, pagetable, etc. However, clone() must not allocate a
separate page table because the parent and child threads should share the same page table. But each
thread still needs a separate trapframe. So, modify allocproc() or create a new function (e.g.,
allocproc_thread) for clone().
• In clone(), you need to specify the child’s user stack’s starting address (hint: trapframe->sp).
• In clone(), you should map each thread's
trapframe page to a certain user space with
no overlap. One simple way would be to map
it below the parent's trapframe location. For
example, see the figure on the right. If your
child thread has a thread ID (> 0), map it to
TRAPFRAME - PGSIZE * (thread ID).
So your first child thread's trapframe is
mapped at TRAPFRAME - PGSIZE, second
one at TRAPFRAME - PGSIZE * 2, and so
on. This can easily avoid overlap.
TRAPFRAME
trapframe
trapframe …
TRAPFRAME - PGSIZE
TRAPFRAME – 2*PGSIZE
Parent’s
Child thread 1
Child thread 2 …

4
• You also need to tell the kernel explicitly the new trapframe locations for your child threads.
Update kernel/trampoline.S as explained earlier. Then, at the end of usertrapret() in
kernel/trap.c, change
 ((void (*)(uint64))trampoline_userret)(satp);
to
 ((void (*)(uint64,uint64))trampoline_userret)(TRAPFRAME - PGSIZE * p->thread_id, satp);
for child threads. Normal processes (or thread ID == 0) should continue to use the default
TRAPFRAME address as follows:
 ((void (*)(uint64,uint64))trampoline_userret)(TRAPFRAME, satp);
• Trampoline (not trapframe) is already mapped by the parent and it can be shared with childs. So
you must not map it again to the page table when creating child threads (doing so will crash).
Only map the trapframe of each child (see mappages() function in the background).
• wait() uses freeproc() to deallocate child’s resources, so you will need to make appropriate
changes to freeproc().
Part 2: User-level thread library
You need to implement a user-level thread library in user/thread.c and user/thread.h. How to
create a library? Once you write user/thread.c, find the line starting with ULIB in Makefile and
modify as follows:
ULIB = $U/ulib.o $U/usys.o $U/printf.o $U/umalloc.o $U/thread.o
This will compile user/thread.c as a library and make it usable by other user-level programs that
include user/thread.h.
The first thread library routine to create is thread_create():
int thread_create(void *(start_routine)(void*), void *arg);
You can think of it as a wrapper function of clone(). Specifically, this routine must allocate a user stack
of PGSIZE bytes, and call clone() to create a child thread. Then, for the parent, this routine returns 0 on
success and -1 on failure. For the child, it calls start_routine() to start thread execution with the input
argument arg. When start_routine() returns, it should terminate the child thread by exit().
Your thread library should also implement simple user-level spin lock routines. There should be a type
struct lock_t that one uses to declare a lock, and two routines lock_acquire() and
lock_release(), which acquire and release the lock. The spin lock should use the atomic test-and-set
operation to build the spin lock (see the xv6 kernel to find an example; you can use GCC’s built-in atomic
operations like __sync_lock_test_and_set). One last routine, lock_init(), is used to initialize the lock
as need be. In summary, you need to implement:
struct lock_t {
uint locked;
};
5
int thread_create(void *(start_routine)(void*), void *arg);
void lock_init(struct lock_t* lock);
void lock_acquire(struct lock_t* lock);
void lock_release(struct lock_t* lock);
These library routines need be declared in user/thread.h and implemented in user/thread.c. Other
user programs should be able to use this library by including the header "user/thread.h".
Tips: In RISC-V, the stack grows downwards, as in most other architectures. So you need to give the
correct stack starting address to clone() for the allocated stack space.
How to test:
We will be using a simple program that uses thread_create() to create some number of threads. The
threads will simulate a game of frisbee, where each thread passes the frisbee (token) to the next thread. The
location of the frisbee is updated in a critical section protected by a lock. Each thread spins to check the
value of the lock. If it is its turn, then it prints a message, and releases the lock. Below shows the program
code. This program should run as-is. Do not modify. Add this program as user/lab3_test.c
#include "kernel/types.h"
#include "kernel/stat.h"
#include "user/user.h"
#include "user/thread.h"
lock_t lock;
int n_threads, n_passes, cur_turn, cur_pass;
void* thread_fn(void *arg)
{
int thread_id = (uint64)arg;
int done = 0;
while (!done) {
lock_acquire(&lock);
 if (cur_pass >= n_passes) done = 1;
 else if (cur_turn == thread_id) {
 cur_turn = (cur_turn + 1) % n_threads;
printf("Round %d: thread %d is passing the token to thread %d\n",
 ++cur_pass, thread_id, cur_turn);
 }
 lock_release(&lock);
 sleep(0);
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc < 3) {
printf("Usage: %s [N_PASSES] [N_THREADS]\n", argv[0]);
 exit(-1);
}
6
n_passes = atoi(argv[1]);
n_threads = atoi(argv[2]);
cur_turn = 0;
cur_pass = 0;
lock_init(&lock);
for (int i = 0; i < n_threads; i++) {
thread_create(thread_fn, (void*)(uint64)i);
}
for (int i = 0; i < n_threads; i++) {
wait(0);
}
printf("Frisbee simulation has finished, %d rounds played in total\n", n_passes);
exit(0);
}
It takes two arguments, the first is the number of rounds (passes) and the second is the number of threads
to create. For example, for 6 rounds with 4 threads:
$ lab3_test 6 4
Round 1: thread 0 is passing the token to thread 1
Round 2: thread 1 is passing the token to thread 2
Round 3: thread 2 is passing the token to thread 3
Round 4: thread 3 is passing the token to thread 0
Round 5: thread 0 is passing the token to thread 1
Round 6: thread 1 is passing the token to thread 2
Frisbee simulation has finished, 6 rounds played in total!
$
Test your implementation with up to 20 threads on 3 emulated CPUs.
The Code and Reference Materials
Download a fresh copy of xv6 from the course repository and add the above-mentioned functionalities.
This Lab may take additional readings and through understanding of the concepts discussed in the
handout. Especially, Chapters 2 and 4 of the xv6 book discusses the essential background for this Lab.
What to submit:
Your submission should include:
(1) XV6 source code with your modifications (‘make clean’ to reduce the size before submission)
(2) Writeup (in PDF). Give a detailed explanation on the changes you have made (Part 1 & 2). Add
the screenshots of the frisbee program results for “lab3_test 10 3” and “lab3_test 21 20”. Also, a
brief summary of the contributions of each member.
(3) Demo video showing that all the functionalities you implemented can work as expected, as if you
were demonstrating your work in person. Demonstrate the results of “lab3_test 10 3” and
“lab3_test 21 20” on three CPUs. Your video should show that xv6 is running with three CPUs
(e.g., ‘hart 1 starting’ and ‘hart 2 starting’ messages when booting up).
7
Grades breakdown:
• Part I: clone() system call: 45 pts
o clone() implementation
o modifications to wait()
o other related kernel changes
• Part II: user-level thread library: 25 pts
o thread_create() routine
o spinlock routines
• Writeup and demo: 30 pts
Total: 100 pts
8
Appendix: kernel/trampoline.S
# # code to switch between user and kernel space. # # this code is mapped at the same virtual address # (TRAMPOLINE) in user and kernel space so that # it continues to work when it switches page tables.
#
# kernel.ld causes this to be aligned # to a page boundary. #
.section trampsec
.globl trampoline
trampoline:
.align 4
.globl uservec
uservec: # # trap.c sets stvec to point here, so # traps from user space start here, # in supervisor mode, but with a # user page table. # # sscratch points to where the process's p->trapframe is # mapped into user space, at TRAPFRAME. # # swap a0 and sscratch # so that a0 is TRAPFRAME csrrw a0, sscratch, a0
 # save the user registers in TRAPFRAME sd ra, 40(a0) sd sp, 48(a0) sd gp, 56(a0) sd tp, 64(a0) sd t0, 72(a0) sd t1, 80(a0) sd t2, 88(a0) sd s0, 96(a0) sd s1, 104(a0) sd a1, 120(a0) sd a2, 128(a0) sd a3, 136(a0) sd a4, 144(a0) sd a5, 152(a0) sd a6, 160(a0) sd a7, 168(a0) sd s2, 176(a0) sd s3, 184(a0) sd s4, 192(a0) sd s5, 200(a0) sd s6, 208(a0) sd s7, 216(a0) sd s8, 224(a0) sd s9, 2**(a0) sd s10, 240(a0) sd s11, 248(a0) sd t3, 256(a0) sd t4, 264(a0) sd t5, 272(a0) sd t6, 280(a0)
# save the user a0 in p->trapframe->a0 csrr t0, sscratch sd t0, 112(a0)
 # restore kernel stack pointer from p->trapframe->kernel_sp ld sp, 8(a0)
 # make tp hold the current hartid, from p->trapframe->kernel_hartid ld tp, **(a0)
 # load the address of usertrap(), p->trapframe->kernel_trap
9
 ld t0, 16(a0)
 # restore kernel page table from p->trapframe->kernel_satp ld t1, 0(a0) csrw satp, t1 sfence.vma zero, zero
 # a0 is no longer valid, since the kernel page # table does not specially map p->tf.
 # jump to usertrap(), which does not return jr t0
.globl userret
userret:
 # userret(TRAPFRAME, pagetable) # switch from kernel to user. # usertrapret() calls here. # a0: TRAPFRAME, in user page table. # a1: user page table, for satp.
 # switch to the user page table. csrw satp, a1 sfence.vma zero, zero
 # put the saved user a0 in sscratch, so we # can swap it with our a0 (TRAPFRAME) in the last step. ld t0, 112(a0) csrw sscratch, t0
 # restore all but a0 from TRAPFRAME ld ra, 40(a0) ld sp, 48(a0) ld gp, 56(a0) ld tp, 64(a0) ld t0, 72(a0) ld t1, 80(a0) ld t2, 88(a0) ld s0, 96(a0) ld s1, 104(a0) ld a1, 120(a0) ld a2, 128(a0) ld a3, 136(a0) ld a4, 144(a0) ld a5, 152(a0) ld a6, 160(a0) ld a7, 168(a0) ld s2, 176(a0) ld s3, 184(a0) ld s4, 192(a0) ld s5, 200(a0) ld s6, 208(a0) ld s7, 216(a0) ld s8, 224(a0) ld s9, 2**(a0) ld s10, 240(a0) ld s11, 248(a0) ld t3, 256(a0) ld t4, 264(a0) ld t5, 272(a0) ld t6, 280(a0)
# restore user a0, and save TRAPFRAME in sscratch csrrw a0, sscratch, a0
 # return to user mode and user pc. # usertrapret() set up sstatus and sepc. Sret
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP201、java設計程序代做
  • 下一篇:CMPT 489代做、Program Synthesis編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    免费观看在线色综合| 中文字幕精品一区二区精品绿巨人 | 亚洲国产精品尤物yw在线观看| 成人午夜免费电影| 在线精品视频一区二区三四| 中文字幕亚洲成人| 色综合天天综合狠狠| 日韩一区二区三区在线视频| 精品在线免费视频| 久久亚裔精品欧美| 午夜伊人狠狠久久| 在线视频日韩| 亚洲一区二区三区四区在线观看 | 高清日韩电视剧大全免费| 欧美中文字幕不卡| 奇米影视在线99精品| 久久一区中文字幕| 日本伊人午夜精品| 鲁大师成人一区二区三区| 亚洲免费大片在线观看| 欧美日韩一区二区三| 欧美国产日韩精品免费观看| 欧美激情第8页| 国产日韩三级在线| 午夜国产精品视频| 国产精品白丝在线| 亚洲精品乱码久久久久久蜜桃91| 中日韩av电影| 亚洲午夜精品福利| 一区二区三区在线免费观看| 精品成人在线| 亚洲一区二区精品久久av| 一区二区三区四区国产| 樱花草国产18久久久久| 国产精品普通话对白| 午夜久久久影院| 色噜噜狠狠色综合中国| 久99久精品视频免费观看| 4438x亚洲最大成人网| 成人免费视频视频| 欧美激情中文不卡| 国产精品久久久一区二区三区| 亚洲一区电影777| 欧美亚洲综合一区| 成人激情av网| 国产精品伦一区| 国产精品一国产精品k频道56| 天天影视涩香欲综合网| 欧美人xxxx| 色综合久久中文字幕综合网 | 精品精品欲导航| 韩国亚洲精品| 日韩高清在线观看| 欧美乱妇15p| 欧美激情日韩| 亚洲影院免费观看| 欧美日韩国产精选| 欧美日韩一区综合| 亚洲第一二三四区| 3atv在线一区二区三区| 欧美三级视频| 麻豆免费看一区二区三区| 精品免费国产二区三区| 日韩亚洲精品在线| 麻豆精品视频在线观看视频| www久久精品| 国产精品夜夜夜一区二区三区尤| 国内精品写真在线观看| 中文字幕免费一区| 欧美午夜理伦三级在线观看| 91网站在线观看视频| 亚洲va韩国va欧美va精品 | 亚洲裸体视频| 久久99国产精品尤物| 国产欧美日韩一区二区三区在线观看| 99精品福利视频| 六月婷婷色综合| 精品国一区二区三区| 一区二区免费在线视频| 国产精品18久久久久久久久久久久 | 亚洲一区二区三区欧美| 狠狠色丁香久久婷婷综| 国产精品久久久久影视| 91黄色激情网站| 9人人澡人人爽人人精品| 亚洲综合区在线| 91精品国产综合久久精品app| 亚洲成人资源| 久久99蜜桃精品| 亚洲人精品午夜| 欧美日韩电影一区| 国产精品久久久久久久久久直播| 经典三级视频一区| 亚洲一区在线视频观看| 日韩一区二区三区在线视频| 久久久久99精品国产片| 在线亚洲美日韩| 色综合天天综合狠狠| 日韩av电影一区| 亚洲美女少妇撒尿| 日韩午夜精品电影| 久热精品在线| 欧美激情视频一区二区三区免费| 国内外成人在线| 亚洲色欲色欲www在线观看| 欧美老肥妇做.爰bbww| 日韩视频一区| 成人性色生活片| 亚洲国产综合视频在线观看| 欧美激情一区二区在线| 亚洲欧美卡通另类91av| 欧美午夜一区| 亚洲在线视频一区| 中文字幕一区二区三区不卡在线 | 91久久精品国产91性色tv| 国内外成人免费视频| 国产一区91精品张津瑜| 日韩精品成人一区二区在线| 久久精品欧美日韩精品| 91麻豆精品国产91| 免费在线亚洲欧美| 亚洲一区精品视频| 国产99久久精品| 精品在线一区二区| 亚洲国产精品传媒在线观看| 精品少妇一区二区三区免费观看| 毛片一区二区| 亚洲人人精品| 国产精品扒开腿做爽爽爽软件| 国产一区亚洲一区| 狠狠色丁香久久婷婷综| 午夜精品福利一区二区蜜股av| 自拍偷拍亚洲激情| 久久久国产午夜精品| 久久精品夜色噜噜亚洲a∨| 日韩一区二区影院| 欧美不卡一二三| 欧美一区二区在线免费观看| 欧美日韩在线精品一区二区三区激情| 国产亚洲在线观看| 亚洲狼人精品一区二区三区| 国产成人在线影院| 美女网站在线免费欧美精品| 亚洲a一区二区| √…a在线天堂一区| 成人免费在线观看入口| 国产精品色婷婷| 中文字幕一区二区三区不卡| 久久久久久99精品| 久久综合九色综合欧美98| 欧美刺激脚交jootjob| 日韩欧美一二三区| 久久亚洲综合色| 国产午夜精品久久久久久久| 国产精品久久久久久亚洲毛片| 国产日韩综合av| 中文字幕一区二区三区四区不卡| 中日韩av电影| 亚洲福利视频一区二区| 免费看欧美美女黄的网站| 日韩精品国产精品| 捆绑变态av一区二区三区| 免费在线看成人av| 岛国一区二区在线观看| 成人免费毛片app| 欧美少妇一区| 午夜精品影院| 午夜在线播放视频欧美| 一本大道久久a久久综合| 欧美性生活大片视频| 欧美一区二区黄| 日韩一区二区三免费高清| 久久综合色一综合色88| 成人欧美一区二区三区黑人麻豆| 最新不卡av在线| 日韩av在线发布| 国产综合色视频| 2024国产精品视频| 欧美伊人久久| 久久精品国产免费看久久精品| 国产一区二区三区在线观看免费视频| 久久99国产精品久久99| 91蝌蚪porny九色| 欧美a级片网站| 日本道色综合久久| 久久精品这里都是精品| 亚洲欧美日韩国产成人精品影院 | 久久久五月婷婷| 亚洲午夜日本在线观看| 久草中文综合在线| 伊人久久大香线蕉av超碰演员| 午夜在线视频观看日韩17c| 日韩欧美成人一区| 国产一区二区三区国产| 成人动漫精品一区二区| 国产视频亚洲| 欧美丰满美乳xxx高潮www| 中文字幕一区二区三区精华液| 午夜国产精品一区| 91蜜桃在线观看|