91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做EF5070、代寫c/c++編程設(shè)計(jì)

時(shí)間:2023-11-30  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Financial Econometrics (EF5070) 
1
Financial Econometrics (EF5070) 2023/2024 Semester A
Assignment 3
• The assignment is to be done individually.
• Your solution should consist of one single pdf file and one single R file.
• Clearly state your name, SIS ID, and the course name on the cover page of your pdf file.
• In your pdf file, indicate how you solved each problem and show intermediate steps. It
is advised to show numerical results in the form of small tables. Make your R code easyto-read. Use explanatory comments (after a # character) in your R file if necessary.
Overly lengthy solutions will receive low marks.
• You need to upload your solution (i.e., the one pdf file and the one R file) on the Canvas
page of the course (Assignments → Assignment 3). The deadline for uploading your
solution is 2 December, 2023 (Saturday), 11:59 p.m.
Financial Econometrics (EF5070) Dr. Ferenc Horvath
2
Exercise 1.
The file a3data.txt contains the daily values of a fictional total return index.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• Use the BDS test to determine whether the returns are realizations of i.i.d. random
variables.
• Plot the ACF of the returns and of the squared returns. Do these plots confirm your
conclusion which you obtained by using the BDS test?
• Based on the Akaike information criterion, fit an AR(p) model to the return time series
with w**1; ≤ 5. Check whether the model residuals are realisations of a white noise or not
by plotting the ACF of the residuals and of the squared residuals, and by performing
the BDS test on the residuals.
• Perform the RESET test, Keenan’s test, Tsay’s F test, and the threshold test to determine
whether the daily n.a.c.c. net returns indeed follow an AR(p) model, where p is equal
to the number of lags which you determined in the previous point based on the Akaike
information criteria. Is your conclusion (based on the four tests) regarding the validity
of an AR(p) model in accordance with your conclusions regarding whether the residuals
in the previous point are realisations of a white noise?
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?)
Financial Econometrics (EF5070) Dr. Ferenc Horvath
3
Exercise 2.
The file HSTRI.txt contains the Hang Seng Total Return Index (which is the major stock market
index of the Hong Kong Stock Exchange) values from 3 January, 19** to 22 September, 2023.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?) Is this result in accordance with the Efficient Market Hypothesis,
according to which (roughly speaking) returns are not predictable?
Financial Econometrics (EF5070) Dr. Ferenc Horvath
4
Exercise 3.
Consider again the daily n.a.c.c. net returns from Exercise 2.
• Calculate the standard deviation of the first 7**4 returns.
• Create a dummy variable for each observed return such that the dummy variable takes
the value of 1 if the absolute value of the return is greater than the previously
calculated standard deviation and it takes the value of zero otherwise.
• Build a neural network model where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
• Using the last 1000 observations, forecast whether the absolute value of the nextperiod return will be higher or not than the earlier calculated standard deviation.
Determine the mean absolute error of your forecast. (I.e., in how many percent of the
cases was your model forecast correct and in how many percent of the cases was it
incorrect?) Is this result in accordance with the concept of volatility clustering?
請(qǐng)加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ecs36c 有向圖程序
  • 下一篇:PX390編程代做、C/C++程序語言代寫
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    欧美日韩免费一区二区三区| av资源站一区| 亚洲无线一线二线三线区别av| 久久国产精品亚洲va麻豆| 日韩一区二区三| 久久97超碰国产精品超碰| 狠狠综合久久| 亚洲欧美色综合| 91在线你懂得| 久久在线观看免费| 国产成人综合亚洲91猫咪| 欧美精品久久一区二区三区| 中文字幕一区二区三区蜜月| 在线精品亚洲| 久久亚洲免费视频| 成人视屏免费看| 精品欧美黑人一区二区三区| 国产乱色国产精品免费视频| 欧美亚洲国产一区二区三区va | 日韩一级二级三级| 成人黄色片在线观看| 日韩视频一区二区三区| 懂色av一区二区三区蜜臀| 欧美成人精品高清在线播放 | 亚洲在线视频网站| 色域天天综合网| 蜜臀国产一区二区三区在线播放| 欧美中文字幕一区二区三区 | 亚洲精选成人| 樱花影视一区二区| 在线视频欧美精品| 国产成人综合视频| 国产精品久久久久久久久快鸭| 91久久久久| 久久 天天综合| 欧美草草影院在线视频| 亚洲高清久久| 国产乱人伦偷精品视频不卡| 久久色.com| 美女尤物久久精品| av电影天堂一区二区在线| 亚洲欧美另类图片小说| 在线免费观看不卡av| 国产精品1区2区3区| 天天色综合天天| 欧美精品亚洲一区二区在线播放| 色综合久久综合网欧美综合网| 亚洲第一会所有码转帖| 制服视频三区第一页精品| 伊人激情综合| 成人永久免费视频| 视频一区中文字幕| 成人免费在线观看入口| 欧美一区二区三区四区在线观看| 99国内精品| 欧美sm重口味系列视频在线观看| 五月婷婷欧美视频| 国产亚洲短视频| 日韩欧美自拍偷拍| 欧美午夜精品免费| 亚洲免费网址| 伊人影院久久| 午夜视频久久久| 成人性生交大片免费看视频在线| 一区二区三区四区国产精品| 久久综合九色欧美综合狠狠| 欧美高清视频www夜色资源网| 国产日韩一区二区三区在线| 不卡的电影网站| 国产精品综合在线视频| 国产在线不卡一区| 国产在线一区二区综合免费视频| 一区二区三区欧美| 国产精品国产三级国产普通话三级| 久久综合九色综合欧美就去吻| 日韩免费看的电影| 337p亚洲精品色噜噜狠狠| 欧美午夜精品一区二区三区| 在线一区二区三区做爰视频网站| 久久久久一区| 欧美色综合网站| 精品久久久久久久久久久久包黑料 | 亚洲男人的天堂在线aⅴ视频| 国产精品毛片久久久久久| 婷婷久久综合九色综合绿巨人| 亚洲成人精品在线观看| 奇米精品一区二区三区四区| 久久国产精品99久久久久久老狼 | 亚洲婷婷综合色高清在线| 亚洲美女一区二区三区| 一区二区三区.www| 精品一区二区三区香蕉蜜桃 | 六月丁香婷婷久久| 色综合色综合色综合色综合色综合| av高清久久久| 91丨porny丨国产入口| 欧美成人久久| 国产精品一区二区在线观看| 欧洲国产伦久久久久久久| 精品久久人人做人人爽| 日韩美女啊v在线免费观看| 蜜臀久久99精品久久久久久9| av在线免费不卡| 国产精品视区| 日韩欧美色电影| 一区二区三区日韩在线观看| 三级影片在线观看欧美日韩一区二区 | 欧美日韩一区小说| 欧美国产精品一区二区三区| 亚洲影院理伦片| av一区二区不卡| 国产日韩一区二区三区在线| 色系网站成人免费| 中文字幕视频一区| 成人高清免费在线播放| 性伦欧美刺激片在线观看| 精品乱人伦小说| 久久99久久99| 久久婷婷影院| 亚洲va天堂va国产va久| 亚洲天堂成人| 国产亚洲精品精华液| 成人av午夜电影| 欧美三级电影在线看| 日韩av电影免费观看高清完整版在线观看 | 亚洲一级不卡视频| 精久久久久久| 亚洲欧美日韩久久精品| 不卡一二三区首页| 2020国产精品自拍| 精品无人码麻豆乱码1区2区 | 全部av―极品视觉盛宴亚洲| 一本色道精品久久一区二区三区 | 91丝袜美女网| 国产视频一区二区三区在线观看| aaa亚洲精品| 久久久九九九九| 欧美国产高清| 国产精品久久久久久久久搜平片| 欧美日韩国产三区| 亚洲另类春色国产| 在线看日本不卡| 老色鬼精品视频在线观看播放| 久久国产主播精品| 蓝色福利精品导航| 精品国产免费视频| www.日韩在线| 一区二区在线电影| 久久国产精品高清| 奇米一区二区三区| 久久久久久久综合| 国产欧美精品| 精品一区二区三区日韩| 精品国精品国产| 亚洲高清免费| 国产一区二区三区观看| 欧美精品一区男女天堂| 国产精品区免费视频| 国产高清不卡一区二区| ㊣最新国产の精品bt伙计久久| 久久人人97超碰国产公开结果| 天天操天天色综合| 精品国产一区二区亚洲人成毛片 | 亚洲久久一区| 亚洲影视在线播放| 精品视频1区2区| 91免费国产在线观看| 欧美日韩一区不卡| 美女在线视频一区| 日韩欧美高清一区| 91亚洲精品乱码久久久久久蜜桃 | 亚洲一区二区三区视频在线播放| 麻豆精品网站| 狠狠色狠狠色综合| 国产亚洲欧美日韩俺去了| 色婷婷综合在线| 成人少妇影院yyyy| 一区二区高清视频在线观看| 欧美精品久久99| 国产一区二区中文| 黄网站免费久久| 亚洲六月丁香色婷婷综合久久| 欧美日韩一区二区三区四区| 在线观看亚洲视频啊啊啊啊| 免费观看久久久4p| 日韩欧美一区二区三区在线| 尤物在线精品| 成人国产免费视频| 极品少妇一区二区| 一区二区久久久久| 精品奇米国产一区二区三区| 欧美日韩系列| 国产又粗又猛又爽又黄91精品| 亚洲精品乱码久久久久久| 国产精品福利电影一区二区三区四区| 欧美日韩国产不卡| 国产精品免费一区二区三区观看| 国产精品影音先锋| 日韩中文字幕麻豆| 亚洲一区二区五区|